Local monodromy of p-adic differential equations: an overview
نویسنده
چکیده
This primarily expository article collects together some facts from the literature about the monodromy of differential equations on a p-adic (rigid analytic) annulus, though often with simpler proofs. These include Matsuda’s classification of quasiunipotent ∇-modules, the Christol-Mebkhout construction of the ramification filtration, and the Christol-Dwork Frobenius antecedent theorem. We also briefly discuss the p-adic local monodromy theorem without proof.
منابع مشابه
The p-adic local monodromy theorem for fake annuli
We establish a generalization of the p-adic local monodromy theorem (of André, Mebkhout, and the author) in which differential equations on rigid analytic annuli are replaced by differential equations on so-called “fake annuli”. The latter correspond loosely to completions of a Laurent polynomial ring with respect to a monomial valuation. The result represents a step towards a higher-dimensiona...
متن کاملA ug 2 00 5 The p - adic local monodromy theorem for fake annuli , I : The monomial case
We establish a generalization of the p-adic local monodromy theorem (of André, Mebkhout, and the author) in which differential equations on rigid analytic annuli are replaced by differential equations on so-called “fake annuli”. The latter correspond loosely to completions of a Laurent polynomial ring with respect to a valuation, which in this paper is restricted to be of monomial form; we defe...
متن کاملA p-adic local monodromy theorem
We prove a local monodromy theorem for p-adic differential equations on an annulus, answering a question of R. Crew. Specifically, suppose given a finite free module over the Robba ring (the ring of germs of functions analytic on some open p-adic annulus with outer radius 1) with a connection and a compatible Frobenius structure. We prove that the module admits a basis over a finite extension o...
متن کاملN ov 2 00 6 Swan conductors for p - adic differential modules , I : A local construction Kiran
We define a numerical invariant, the differential Swan conductor, for certain differential modules on a rigid analytic annulus over a p-adic field. This gives a definition of a conductor for p-adic Galois representations with finite local monodromy over an equal characteristic discretely valued field, which agrees with the usual Swan conductor when the residue field is perfect.
متن کاملSwan conductors for p-adic differential modules, I: A local construction
We define a numerical invariant, the differential Swan conductor, for certain differential modules on a rigid analytic annulus over a p-adic field. This gives a definition of a conductor for p-adic Galois representations with finite local monodromy over an equal characteristic discretely valued field, which agrees with the usual Swan conductor when the residue field is perfect. We also establis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005